Investigating the Potential Range Expansion of the Vector Mosquito Aedes aegypti in Mexico with NASA Earth Science Remote Sensing Results

Bill Crosson, USRA, Principal Investigator

NSSTC: Sue Estes, Maury Estes, Max Moreno-Madrinan, Sarah Hemmings, Dan Irwin NCAR: Mary Hayden, Andy Monaghan, Dan Steinhoff CDC: Emily Zielinski-Gutierrez

U. Veracruz: Carlos Welsh-Rodriguez, Saul Lozano, Lars Eisen

Goal

To facilitate the investigation and modeling of the social, economic, environmental, and epidemiological factors that control the survival and abundance of the mosquito vector *Aedes aegypti*, the primary transmitter of dengue viruses. The ultimate goal is to employ this integrated modeling approach toward understanding the potential range of *Aedes aegypti* to expand toward heavily populated high elevation areas such as Puebla and Mexico City under various climate change and socio-economic scenarios.

Objective 1

Employ NASA remotely-sensed data to augment environmental monitoring and modeling. These data -- surface temperature, precipitation, landcover, vegetation indices, soil moisture and elevation -- are critical for understanding mosquito habitat needed for survival and abundance.

Objective 2

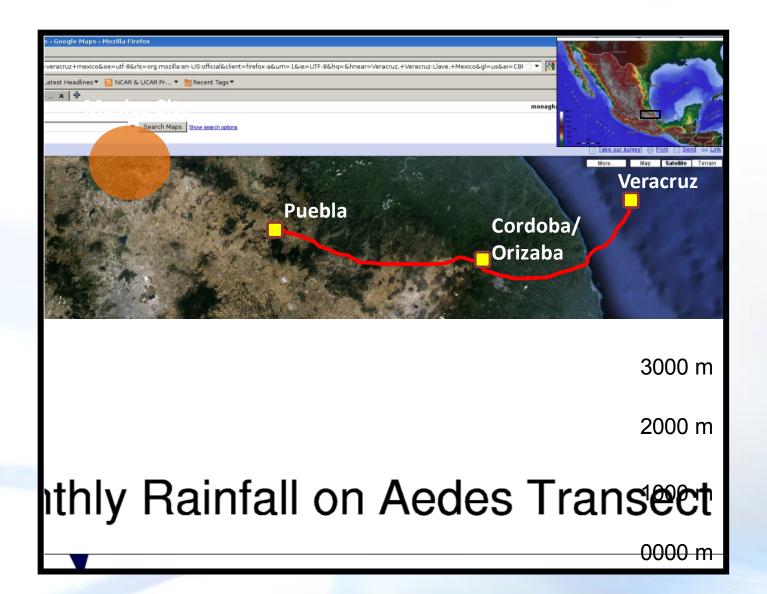
Implement GIS and remote sensing training sessions to transfer remotely-sensed data products to end users and to facilitate continued monitoring

➤ A training session was conducted at the University of Veracruz, Xalapa, 20-22 March 2012: 'Introduction to SERVIR for decision-making through the use of GIS and remote sensing'.

"Introduction to SERVIR for decision-making through the use of GIS and remote sensing"

"Introducción a SERVIR para la toma de decisiones a través del uso de SIG y teledetección"

Agenda

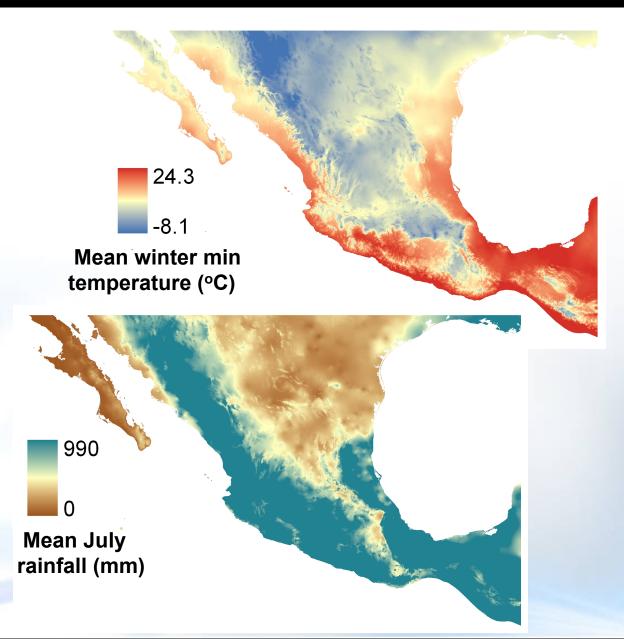

Xalapa, Mexico, March 20 - 22, 2012

Time / Hora	Activity / Actividad
Tuesday, March 20	
8:00 – 8:20 AM	Opening words / Palabras de Apertura
8:20 – 9:20 AM	Overview of Dengue Fever Project/ NCAR
9:20 – 10:00 AM	Overview of SERVIR / Descripción general de SERVIR
10:00 – 10:30 AM	Introduction to Remote Sensing / Introducción a teledetección
10:30 – 10:45 AM	Coffee Break
10:45 AM – 12:00 PM	Where/how to find and download satellite images / Donde/como encontrar y descargar imágenes satelitales
12:00 – 1:00 PM	Lunch
1:00 – 2:00 PM	Basic principles of Remote Sensing / Principios basicos de Teledetección
2:00 – 3:30 PM	Properties of Multispectral satellite images / Propiedades de imágenes Multiespectrales

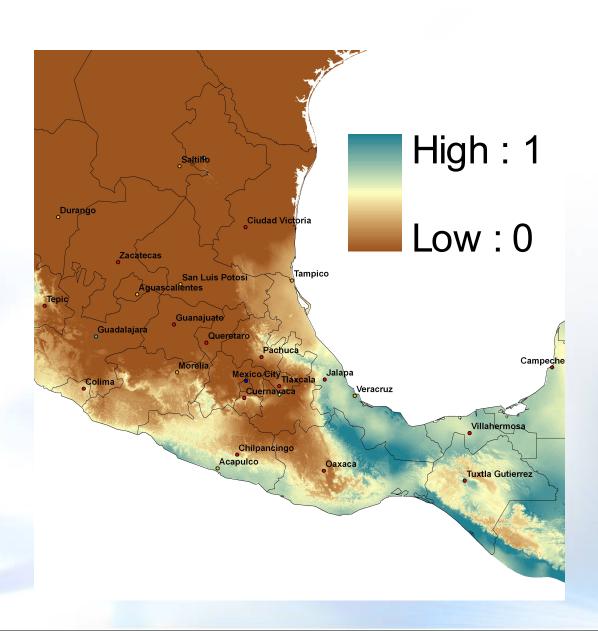
Objective 3

Integrate data products into the NASA SERVIR framework to disseminate key project results

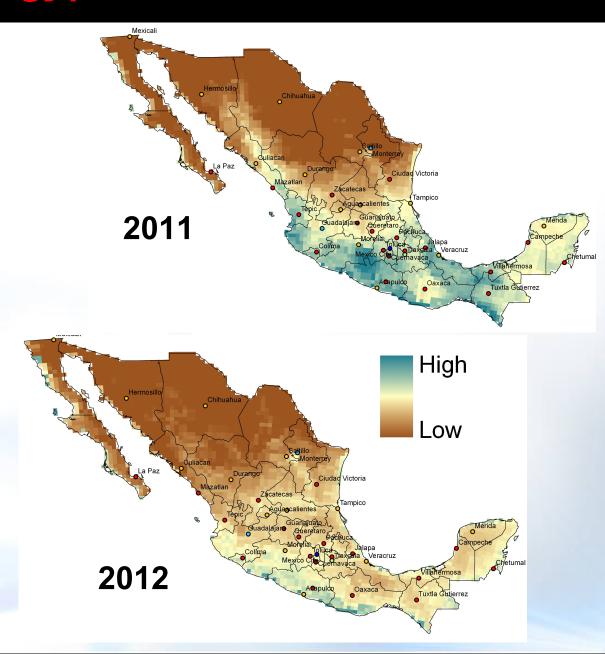
Sampling Transact

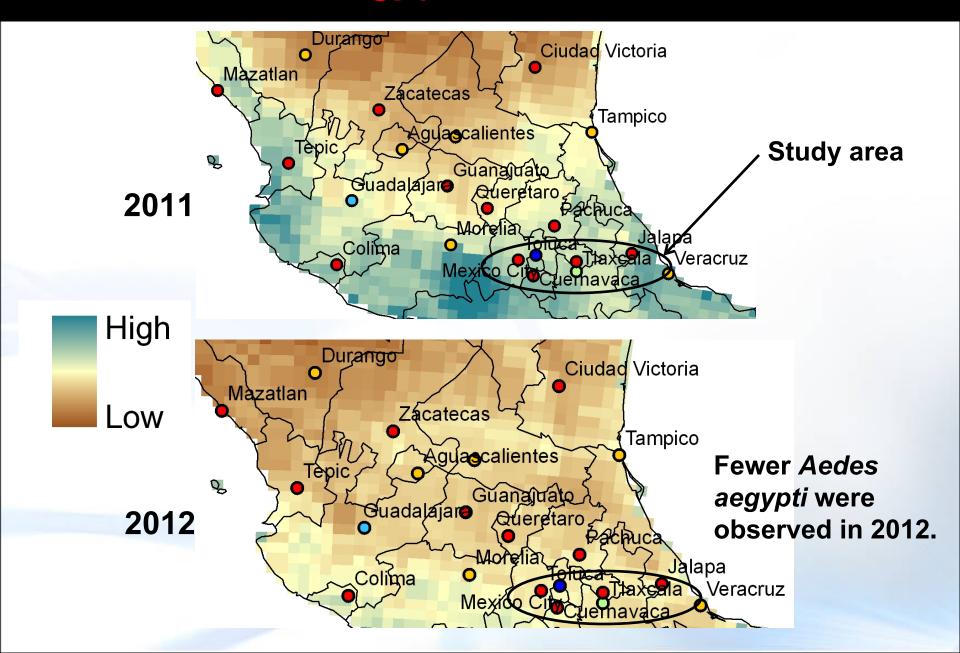

Project Outcomes

- ➤ First year of field work was conducted in summer 2011 to sample pupae, larvae and adult *Aedes aegypti* in 12 communities.
- ➤ Second year of field work conducted in summer 2012 to sample pupae and adult *Aedes aegypti* in 4 communities Rio Blanco, Maltrata, Acultzingo, Puebla at the habitat margin.
- > Climate and remote sensing data have been collected for use in modeling and analysis.
- ➤ A climate-based model has been developed to predict potential presence of *Aedes aegypti* in households.



A habitat suitability model has been developed and applied to predict presence of *Aedes aegypti* in households for 2011 and 2012.


- A regression model was developed using 2011 Aedes aegypti field data and climatological inputs to estimate the spatial pattern of 'potential presence'.
- Independent variables from World Climate Data (1 km):
- ✓ Mean July min/max temperature, rainfall
- ✓ Mean Dec-Feb min temperature
- ✓ Elevation (ASTER; 250 m)



 Habitat is very sensitive to elevation and temperature

- Another regression model was developed using 2011-12 field data to estimate the spatial pattern of *Aedes aegypti* presence. This model is based on NARR meteorological data (32 km) for respective year.
- Independent variables:
- ✓ Elevation (250 m)
- ✓ Mean July min/max temperature
- √ Total July rainfall
- ✓ Previous Dec-Feb mean min temperature

Statistical Modeling of Aedes aegypti

- Principal Component Analysis was performed at the community level to identify best *Aedes aegypti* predictors among variables describing the natural environment:
- mean 60-day maximum temperature;
- 30-day rainfall;
- terrain elevation;

and the built environment:

proportion of containers at ground level containing water.

A linear regression model was then developed using these independent variables. The regression r² of 0.852 is significant above 99% confidence level.

Data Products for SERVIR

- ➤ Remotely-Sensed Data for Southern and Central Mexico and parts of Central America:
 - Land Cover Land Use 2009
- ➤ Map Products for Southern and Central Mexico:
 - Aedes aegypti 'potential presence' (based on climatology)
 - Aedes aegypti habitat suitability maps for 2011 and 2012 (based on weather)
 - Suitability maps for the summer *Aedes aegypti* maximum will be generated by SERVIR each spring and updated in summer.
 - Forecast for year will be in the form of spatial maps showing 'much below', 'below', etc. suitability for *Aedes aegypti*.

Applied Readiness Level (ARL)

- > Starting ARL: 2 (Application Concept)
 - √ Some field data collected through predecessor project
 - √ Need for habitat suitability mapping identified
- > Ending ARL: 6 (Demonstration in Relevant Environment)
 - ✓ Environmental and household survey data collected
 - ✓ Habitat suitability model developed from environmental and survey data
 - ✓ Limited validation performed on model performance

Costing Status

 Work on the 2-year project began in May 2011. All funds have been received. All funds will be expended through September 2013.

Impacts and Lessons Learned

Impacts

Publications:

- > Several conference presentations
- > One paper in development stage

- Lessons Learned
 - Aedes aegypti discovered at higher elevations than previously reported
 - ➤ There is very high variability in *Aedes aegypti* presence and abundance between households in a community; much of this is not explainable on first inspection.

Issues

 Correlations between remotely-sensed environmental parameters (NDVI, LST, land cover) and Aedes aegypti presence/ abundance are poor at the sub-community scale.

WorldView-1 0.5 m panchromatic view of Rio Blanco with households sampled

Issues

 Remote sensing and modeling of Aedes aegypti habitat is difficult at the household level due to very small spatial scales.

Mosquito condominium